Speaker adaptation for HMM-based speech synthesis system using MLLR
نویسندگان
چکیده
This paper describes a voice characteristics conversion technique for an HMM-based text-to-speech synthesis system. The system uses phoneme HMMs as the speech synthesis units, and voice characteristics conversion is achieved by changing HMM parameters appropriately. To transform the voice characteristics of synthetic speech to the target speaker, we apply an MLLR (Maximum Likelihood Linear Regression) technique, one of the speaker adaptation techniques, to the system. From the results of objective and subjective tests, it is shown that the characteristics of synthetic speech is close to target speaker’s voice, and the speech generated from the adapted model set using 5 sentences has almost the same DMOS score as that from the speaker dependent model set.
منابع مشابه
Speaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation
A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...
متن کاملSpeaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation
A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...
متن کاملAdaptation of pitch and spectrum for HMM-based speech synthesis using MLLR
This paper describes a technique for synthesizing speech with an arbitrary speaker characteristics using speaker independent speech units, which we call “average voice” units. The technique is based on an HMM-based text-to-speech (TTS) system and MLLR adaptation algorithm. In the HMM-based TTS system, speech synthesis units are modeled by multi-space probability distribution (MSD) HMMs which ca...
متن کاملText-to-speech synthesis with arbitrary speaker's voice from average voice
This paper describes a technique for synthesizing speech with any desired voice. The technique is based on an HMM-based text-to-speech (TTS) system and MLLR adaptation algorithm. To generate speech of an arbitrarily given target speaker, speaker-independent speech units, i.e., average voice models, is adapted to the target speaker using MLLR framework. In addition to spectrum and pitch adaptati...
متن کاملSpeaker Adaptation of Various Components in Deep Neural Network based Speech Synthesis
In this paper, we investigate the effectiveness of speaker adaptation for various essential components in deep neural network based speech synthesis, including acoustic models, acoustic feature extraction, and post-filters. In general, a speaker adaptation technique, e.g., maximum likelihood linear regression (MLLR) for HMMs or learning hidden unit contributions (LHUC) for DNNs, is applied to a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998